High Availability Solutions for MySQL

Lenz Grimmer

<lenz@grimmer.com>

2008-08-29

DrupalCon 2008, Szeged, Hungary

Agenda

- High Availability in General
- MySQL Replication
- MySQL Cluster
- DRBD
- Links/Tools

Why High Availability Matters

- Downtime is expensive
- You miss \$\$\$
- Your Boss complains
- New Site visitors won't come back

What Is HA Clustering?

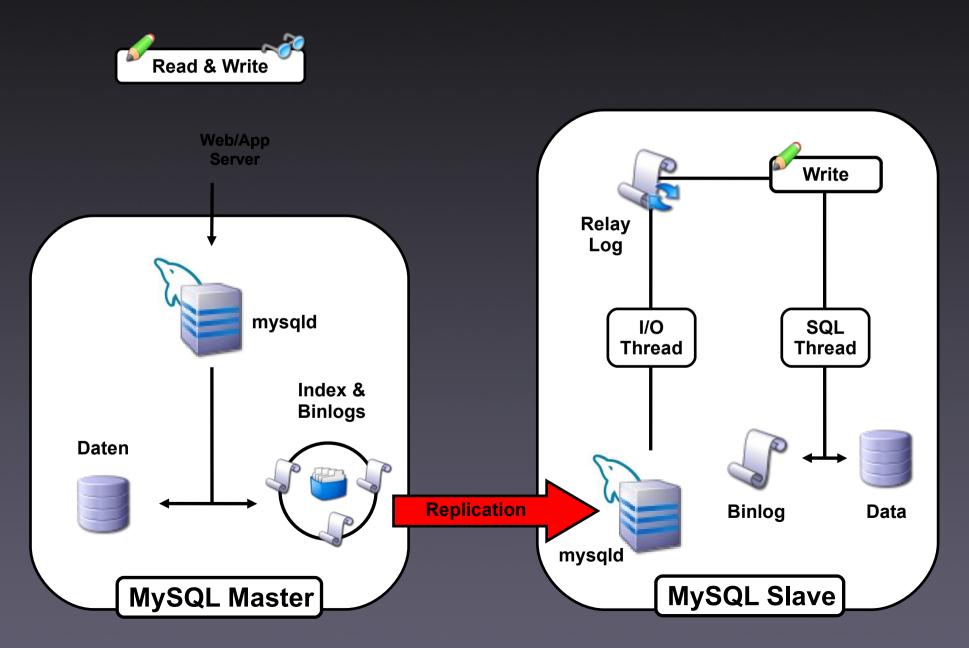
- One service goes down → others take over its work
- IP address takeover, service takeover
- Not designed for high-performance
- Not designed for high troughput (load balancing)

Split-Brain

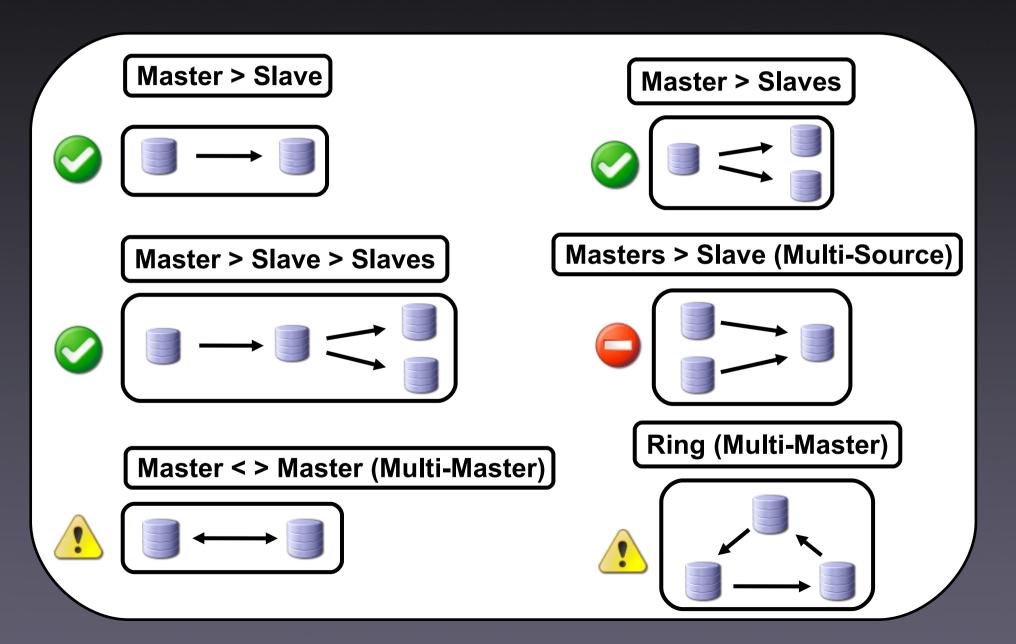
- Communications failures can lead to separated partitions of the cluster
- If those partitions each try and take control of the cluster, then it's called a split-brain condition
- If this happens, then bad things will happen http://linux-ha.org/BadThingsWillHappen
- Use Fencing or Moderatation/Arbitration to avoid it

Eliminating the SPOF

- Identify what will fail
 - Disks
- Find out what can fail
 - Network cables
 - 00M
 - Power supplies


Rules of High Availability

- Prepare for failure
- Keep it simple, stupid (KISS)
- Complexity is the enemy of reliability
- Test your setup frequently


MySQL Replication

- One-way, statement-based
- One Master, many Slaves
- Asynchronous Slaves can lag
- Master maintains binary logs & index
- Easy to set up
- Built into MySQL
- Replication is single-threaded

MySQL Replication Overview

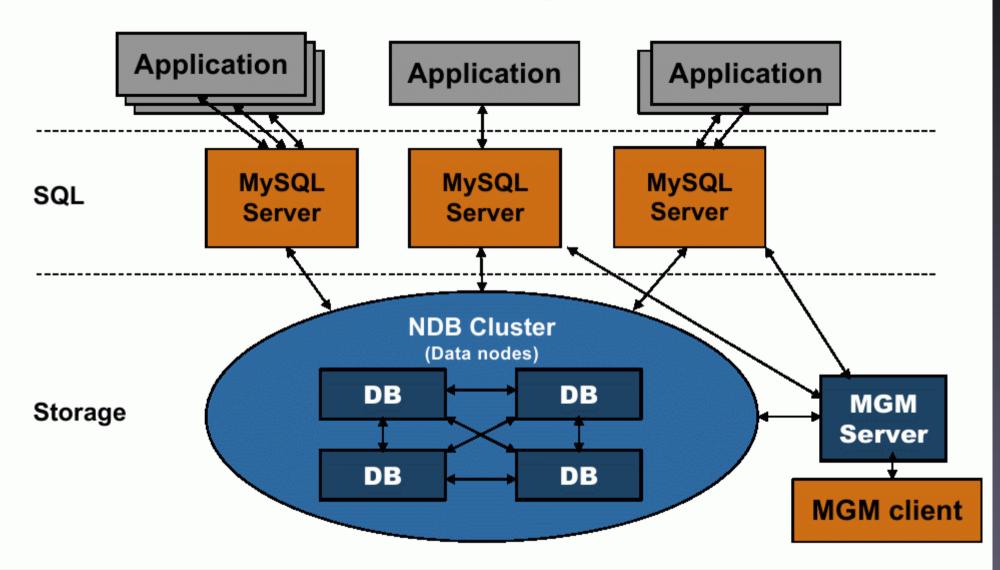
Replication Topologies

Replication & HA

- Combined with Heartbeat
- Virtual IP takeover
- Slave gets promoted to Master
- Side benefits: load balancing & backup
- Tricky to fail back
- No automatic conflict resolution
- Proper failover needs to be scripted

Master-Master Replication

- Useful for easier failover
- Not suitable for load-balancing
 - Writes still end up on both machines
 - Neither machine has the authorative data
- Don't write to both masters!
- Use Sharding or Partitioning instead (e.g. MySQL Proxy)


MySQL Cluster

- Shared nothing
- Automatic partitioning
- Distributed Fragments
- Synchronous replication
- Fast automatic fail-over of data nodes
- Automatic resynchronization
- Transparent to Application
- Supports Transactions

MySQL Cluster

- In-memory tables
- Not suitable for all query patterns
- Not suitable for large datasets
- Latency matters
- Can be combined with MySQL Replication

Cluster Components

DRBD

- Distributed Replicated Block Device
- "Raid-1 over network"
- Synchronous block replication
- Automatic resync on recover
- Application-agnostic
- Can mask local I/O errors
- Active/passive configuration

DRBD & Heartbeat

- Heartbeat mounts file system on failover (passive node becomes active)
- Data only accessible on the active node
- (LVM snapshots can work around this)
- Increased I/O Latency
- Failover is "cold" (fsck, log recovery, buffers/caches)

	Dagwiyanaanta	MyCOL Danlingtion	MySQL Replication &	MySQL, Heartbeat &	MySQL
Availability	Requirements	MySQL Replication	Heartbeat	DRBD	Cluster
	Automated IP				
	Failover	No	Yes	Yes	No
	Automated DB				
	Failover	No	No	Yes	Yes
	Typical Failover				
	time	Varies	Varies	< 30s	< 3s
	Auto resync of data	No	No	Yes	Yes
	Geographic				MySQL
	redundancy	Yes	Yes	MySQL Replication	Replication
calability	Built-in load				
	balancing	MySQL Replication	MySQL Replication	MySQL Replication	Yes
	Read-intensive	Yes	Yes	MySQL Replication	Yes
	Write-intensive	No	No	Possible	Yes
Š	#Nodes/Cluster	Master/Slave(s)	Master/Slave(s)	Active/Passive	255

Related tools / Links

- Linux Heartbeat http://linux-ha.org/
- DRBD http:/drbd.org/
- Linux Cluster Information Center http://www.lcic.org/ha.html
- Red Hat Cluster Suite http://www.redhat.com/cluster_suite/
- Sun Open High Availability Cluster
 http://opensolaris.org/os/project/ha-mysql/

Tools/Links

- MySQL Multi-Master Replication
 Manager
 http://code.google.com/p/mysql-master-master/
- Maatkit http://maatkit.sourceforge.net/
- Mon scheduler and alert management http://www.kernel.org/software/mon/
- Continuent Tungsten Replicator

 https://community.continuent.com/community/tungsten-replicator

Q & A

Questions, Comments?

Thank you! Lenz Grimmer <lenz@grimmer.com>