
© 2008 Acquia, Inc.Fields in core

Fields in core

Drupalcon Szeged 2008
Barry Jaspan

© 2008 Acquia, Inc.Fields in core

Motivation

© 2008 Acquia, Inc.Fields in core

Motivation
• “Drupal’s strategic advantage is an

architecture that allows contributed modules
to easily add value to content.”

© 2008 Acquia, Inc.Fields in core

Motivation
• “Drupal’s strategic advantage is an

architecture that allows contributed modules
to easily add value to content.”

• The future of the web is interoperability, high-
fidelity data, and web services
• i.e. The Semantic Web

© 2008 Acquia, Inc.Fields in core

Motivation
• “Drupal’s strategic advantage is an

architecture that allows contributed modules
to easily add value to content.”

• The future of the web is interoperability, high-
fidelity data, and web services
• i.e. The Semantic Web

• Drupal’s content model is based on Nodes
• Monolithic, local, and (currently) disorganized

© 2008 Acquia, Inc.Fields in core

Motivation

© 2008 Acquia, Inc.Fields in core

Motivation
• Field API addresses these issues:

• Preserves the power and flexibility of
hook_nodeapi

• Fields are well-defined data elements, easily
exported

• Fields can be attached to any Content object,
not just Nodes (phase 2)

© 2008 Acquia, Inc.Fields in core

Motivation
• Field API addresses these issues:

• Preserves the power and flexibility of
hook_nodeapi

• Fields are well-defined data elements, easily
exported

• Fields can be attached to any Content object,
not just Nodes (phase 2)

• Field API must be in core for this to work

© 2008 Acquia, Inc.Fields in core

Design goals

© 2008 Acquia, Inc.Fields in core

Design goals
• Unify hook_nodapi & CCK field data

• Node properties: title, body

• Core & contrib modules: taxonomy, fivestar

• Custom CCK fields

© 2008 Acquia, Inc.Fields in core

Design goals
• Unify hook_nodapi & CCK field data

• Node properties: title, body

• Core & contrib modules: taxonomy, fivestar

• Custom CCK fields

• API, not forms and UI
• Simpler and cleaner D6 CCK API

© 2008 Acquia, Inc.Fields in core

Design goals
• Unify hook_nodapi & CCK field data

• Node properties: title, body

• Core & contrib modules: taxonomy, fivestar

• Custom CCK fields

• API, not forms and UI
• Simpler and cleaner D6 CCK API

• (At least) as functional and performant as D6
CCK

© 2008 Acquia, Inc.Fields in core

Field API: Base concepts

© 2008 Acquia, Inc.Fields in core

Field API: Base concepts
• Field Type: data type implemented by a module

• e.g. text, nodereference, address

© 2008 Acquia, Inc.Fields in core

Field API: Base concepts
• Field Type: data type implemented by a module

• e.g. text, nodereference, address

• Field: a specific configuration of a type
• Settings that define the unique characteristics

• Base properties: type, name, cardinality, sharable

• Per-type properties: Text, formatted

© 2008 Acquia, Inc.Fields in core

Field API: Base concepts
• Field Type: data type implemented by a module

• e.g. text, nodereference, address

• Field: a specific configuration of a type
• Settings that define the unique characteristics

• Base properties: type, name, cardinality, sharable

• Per-type properties: Text, formatted

• Field Instance: Field + Content Type
• “Subtitle field on Article nodes”

• Base properties: display format, weight, widget

• Per-type properties: GMap, width/height, scale...

© 2008 Acquia, Inc.Fields in core

Field API: Data types
// Base Field data structure.

class Field {

 public $field_name;

 public $type;

 public $required = 0;

 // ... more properties here ...

}

// Additional field properties needed for text fields.

class TextField extends Field {

 // Plain text or formatted?

 public $text_processing;

 // The length property of the 'value' column.

 public $max_length;

}

© 2008 Acquia, Inc.Fields in core

Field API: Data types
// Base Field data structure.

class Field {

 public $field_name;

 public $type;

 public $required = 0;

 // ... more properties here ...

}

// Additional field properties needed for text fields.

class TextField extends Field {

 // Plain text or formatted?

 public $text_processing;

 // The length property of the 'value' column.

 public $max_length;

}

Don’t
Panic!

No OO code here
(god forbid)!

© 2008 Acquia, Inc.Fields in core

Field API: Data types
// Base Field data structure.

class Field {

 public $field_name;

 public $type;

 public $required = 0;

 // ... more properties here ...

}

// Additional field properties needed for text fields.

class TextField extends Field {

 // Plain text or formatted?

 public $text_processing;

 // The length property of the 'value' column.

 public $max_length;

}

© 2008 Acquia, Inc.Fields in core

Field API: Data types
// Base Field data structure.

class Field {

 public $field_name;

 public $type;

 public $required = 0;

 // ... more properties here ...

}

// Additional field properties needed for text fields.

class TextField extends Field {

 // Plain text or formatted?

 public $text_processing;

 // The length property of the 'value' column.

 public $max_length;

}

© 2008 Acquia, Inc.Fields in core

Field API: Data types
// Base Field Instance data structure.

class FieldInstance {

 // Public properties

 public $field_name;

 public $type_name;

 public $widget;

 // ... more properties here ...

}

// Defines a text FieldInstance.

class TextFieldInstance extends FieldInstance {

 protected $widget_class = 'TextWidgetSettings';

}

// Additional widget settings for text fields/areas

class TextWidgetSettings extends WidgetSettings {

 public $rows;

}

© 2008 Acquia, Inc.Fields in core

Field API: Create !elds
• API Paradigm: Instantiate, Customize, Create

// Instantiate a TextField (in memory only)

// with default values

$subtitle = new TextField(‘subtitle’);

// Allow users to select input format

$subtitle->text_processing = TRUE;

// Set the maximum length

$subtitle->max_length = 100;

// Create the field

field_create_field($subtitle);

© 2008 Acquia, Inc.Fields in core

Field API: Create instances
• Same paradigm.

// Instantiate a new TextFieldInstance, specifying

// field name, content type, and (because text.module

// requires it) input widget.

$instance = new TextFieldInstance(‘subtitle’, ‘article’,

 ‘text_textarea’);

// Set the input rows for the textarea widget.

$instance->widget->rows = 3;

// Create the field instance

field_create_instance($instance);

© 2008 Acquia, Inc.Fields in core

Field API: Update instances

© 2008 Acquia, Inc.Fields in core

Field API: Update instances
• Instance properties are lightweight and easily

changed

// Retrieve the instance

$instance = field_get_instance(‘subtitle’, ‘article’);

// Change something

$instance->widget->rows = 5;

// Save it

field_update_instance($instance);

© 2008 Acquia, Inc.Fields in core

Field API: Update instances
• Instance properties are lightweight and easily

changed

// Retrieve the instance

$instance = field_get_instance(‘subtitle’, ‘article’);

// Change something

$instance->widget->rows = 5;

// Save it

field_update_instance($instance);

• Fields, however, are more complicated...

© 2008 Acquia, Inc.Fields in core

Field storage: CCK today

© 2008 Acquia, Inc.Fields in core

Field storage: CCK today
• CCK fields are stored in one of three ways:

© 2008 Acquia, Inc.Fields in core

Field storage: CCK today
• CCK fields are stored in one of three ways:

• All per-type fields for a type are stored in table
content_type_<type>, one row/node

• Per-field fields are stored in table
content_field_<field>, one or more (if
multiple) rows/node

• CCK converts between them willy-nilly

Single Multiple
Not shared per-type per-field, delta

Shared per-field per-field, delta

© 2008 Acquia, Inc.Fields in core

Field storage: CCK today
• CCK fields are stored in one of three ways:

• All per-type fields for a type are stored in table
content_type_<type>, one row/node

Single Multiple
Not shared per-type per-field, delta

Shared per-field per-field, delta

© 2008 Acquia, Inc.Fields in core

Field storage: CCK today
• CCK fields are stored in one of three ways:

• All per-type fields for a type are stored in table
content_type_<type>, one row/node

• Per-field fields are stored in table
content_field_<field>, one or more (if
multiple) rows/node

Single Multiple
Not shared per-type per-field, delta

Shared per-field per-field, delta

© 2008 Acquia, Inc.Fields in core

Field storage: CCK today
• CCK fields are stored in one of three ways:

• All per-type fields for a type are stored in table
content_type_<type>, one row/node

• Per-field fields are stored in table
content_field_<field>, one or more (if
multiple) rows/node

• CCK converts between them willy-nilly

Single Multiple
Not shared per-type per-field, delta

Shared per-field per-field, delta

© 2008 Acquia, Inc.Fields in core

Field storage: Core

© 2008 Acquia, Inc.Fields in core

Field storage: Core
• Conflicting requirements:

© 2008 Acquia, Inc.Fields in core

Field storage: Core
• Conflicting requirements:

• Humans cannot predict the future; fields must be
changeable

© 2008 Acquia, Inc.Fields in core

Field storage: Core
• Conflicting requirements:

• Humans cannot predict the future; fields must be
changeable

• Field conversion is slow and currently fragile

© 2008 Acquia, Inc.Fields in core

Field storage: Core
• Conflicting requirements:

• Humans cannot predict the future; fields must be
changeable

• Field conversion is slow and currently fragile

• Per-type storage is more efficient (?)

© 2008 Acquia, Inc.Fields in core

Field storage: Core
• Conflicting requirements:

• Humans cannot predict the future; fields must be
changeable

• Field conversion is slow and currently fragile

• Per-type storage is more efficient (?)
• Views query optimization

© 2008 Acquia, Inc.Fields in core

Field storage: Core
• Conflicting requirements:

• Humans cannot predict the future; fields must be
changeable

• Field conversion is slow and currently fragile

• Per-type storage is more efficient (?)
• Views query optimization

• Per-field storage does not solve all problems

© 2008 Acquia, Inc.Fields in core

Field storage: Core
• Conflicting requirements:

• Humans cannot predict the future; fields must be
changeable

• Field conversion is slow and currently fragile

• Per-type storage is more efficient (?)
• Views query optimization

• Per-field storage does not solve all problems
• Converting text to nodereference

© 2008 Acquia, Inc.Fields in core

Field storage: Core
• Conflicting requirements:

• Humans cannot predict the future; fields must be
changeable

• Field conversion is slow and currently fragile

• Per-type storage is more efficient (?)
• Views query optimization

• Per-field storage does not solve all problems
• Converting text to nodereference

• Solution:

© 2008 Acquia, Inc.Fields in core

Field storage: Core
• Conflicting requirements:

• Humans cannot predict the future; fields must be
changeable

• Field conversion is slow and currently fragile

• Per-type storage is more efficient (?)
• Views query optimization

• Per-field storage does not solve all problems
• Converting text to nodereference

• Solution:
• Fields retain per-type and per-field storage

© 2008 Acquia, Inc.Fields in core

Field storage: Core
• Conflicting requirements:

• Humans cannot predict the future; fields must be
changeable

• Field conversion is slow and currently fragile

• Per-type storage is more efficient (?)
• Views query optimization

• Per-field storage does not solve all problems
• Converting text to nodereference

• Solution:
• Fields retain per-type and per-field storage

• Field conversions

© 2008 Acquia, Inc.Fields in core

Field API: Update !eld

© 2008 Acquia, Inc.Fields in core

Field API: Update !eld
• Updating a field is a “field conversion”

© 2008 Acquia, Inc.Fields in core

Field API: Update !eld
• Updating a field is a “field conversion”

• field_update_field() in Field Admin (contrib)

© 2008 Acquia, Inc.Fields in core

Field API: Update !eld
• Updating a field is a “field conversion”

• field_update_field() in Field Admin (contrib)
• Updates per-type/-field storage based on

cardinality and sharable (code from CCK)

© 2008 Acquia, Inc.Fields in core

Field API: Update !eld
• Updating a field is a “field conversion”

• field_update_field() in Field Admin (contrib)
• Updates per-type/-field storage based on

cardinality and sharable (code from CCK)

• Invokes hook_field_convert($old, $new)

© 2008 Acquia, Inc.Fields in core

Field API: Update !eld
• Updating a field is a “field conversion”

• field_update_field() in Field Admin (contrib)
• Updates per-type/-field storage based on

cardinality and sharable (code from CCK)

• Invokes hook_field_convert($old, $new)

• A module returns TRUE if it handled the
conversion

© 2008 Acquia, Inc.Fields in core

Field API: Update !eld
• Updating a field is a “field conversion”

• field_update_field() in Field Admin (contrib)
• Updates per-type/-field storage based on

cardinality and sharable (code from CCK)

• Invokes hook_field_convert($old, $new)

• A module returns TRUE if it handled the
conversion

• Usage:
// Load the existing field
$old = field_read_field(‘old_field’);
// Instantiate a new field (could clone instead)
$new = new <Type>Field(‘new_field’);
// Convert old to new (in this case, renames too)
field_update_field($old, $new);

© 2008 Acquia, Inc.Fields in core

Field API: Update examples

© 2008 Acquia, Inc.Fields in core

Field API: Update examples
1. Convert field from single to multiple

• field_update_field() uses existing code

© 2008 Acquia, Inc.Fields in core

Field API: Update examples
1. Convert field from single to multiple

• field_update_field() uses existing code

2. Convert text field from plain to formatted
• field_update_field() calls hook_field_convert()

• text module: add new column, return TRUE

© 2008 Acquia, Inc.Fields in core

Field API: Update examples
1. Convert field from single to multiple

• field_update_field() uses existing code

2. Convert text field from plain to formatted
• field_update_field() calls hook_field_convert()

• text module: add new column, return TRUE

3. Convert text field to node reference
• nodereference module: create node type, SELECT DISTINCT,

new node per value, create new field and instance, UPDATE nid of new
instance based on join, delete old instance and field, rename new field to old
name, return TRUE.

© 2008 Acquia, Inc.Fields in core

Field API: Update examples
1. Convert field from single to multiple

• field_update_field() uses existing code

2. Convert text field from plain to formatted
• field_update_field() calls hook_field_convert()

• text module: add new column, return TRUE

3. Convert text field to node reference
• nodereference module: create node type, SELECT DISTINCT,

new node per value, create new field and instance, UPDATE nid of new
instance based on join, delete old instance and field, rename new field to old
name, return TRUE.

• CCK can’t (really) do 2 or 3 at all

© 2008 Acquia, Inc.Fields in core

Field API: Update examples
1. Convert field from single to multiple

• field_update_field() uses existing code

2. Convert text field from plain to formatted
• field_update_field() calls hook_field_convert()

• text module: add new column, return TRUE

3. Convert text field to node reference
• nodereference module: create node type, SELECT DISTINCT,

new node per value, create new field and instance, UPDATE nid of new
instance based on join, delete old instance and field, rename new field to old
name, return TRUE.

• CCK can’t (really) do 2 or 3 at all

• All require Batch API during page request

© 2008 Acquia, Inc.Fields in core

Next steps & how to help

© 2008 Acquia, Inc.Fields in core

Next steps & how to help
• Update code to CCK HEAD

• SVN: https://jaspan.devguard.com/svn/fields

• Apparently some patches need to be ported...

https://jaspan.devguard.com/svn/fields
https://jaspan.devguard.com/svn/fields

© 2008 Acquia, Inc.Fields in core

Next steps & how to help
• Update code to CCK HEAD

• SVN: https://jaspan.devguard.com/svn/fields

• Apparently some patches need to be ported...

• Port field modules to new API
• text.module is done as example

https://jaspan.devguard.com/svn/fields
https://jaspan.devguard.com/svn/fields

© 2008 Acquia, Inc.Fields in core

Next steps & how to help
• Update code to CCK HEAD

• SVN: https://jaspan.devguard.com/svn/fields

• Apparently some patches need to be ported...

• Port field modules to new API
• text.module is done as example

• Port CCK UI to Field API
• Staying in contrib

https://jaspan.devguard.com/svn/fields
https://jaspan.devguard.com/svn/fields

© 2008 Acquia, Inc.Fields in core

Next steps & how to help
• Update code to CCK HEAD

• SVN: https://jaspan.devguard.com/svn/fields

• Apparently some patches need to be ported...

• Port field modules to new API
• text.module is done as example

• Port CCK UI to Field API
• Staying in contrib

• Write field conversions
• Be the DabbleDB-killing hero!

https://jaspan.devguard.com/svn/fields
https://jaspan.devguard.com/svn/fields

© 2008 Acquia, Inc.Fields in core

Next steps & how to help
• Update code to CCK HEAD

• SVN: https://jaspan.devguard.com/svn/fields

• Apparently some patches need to be ported...

• Port field modules to new API
• text.module is done as example

• Port CCK UI to Field API
• Staying in contrib

• Write field conversions
• Be the DabbleDB-killing hero!

• Dries really wants all this in D7

https://jaspan.devguard.com/svn/fields
https://jaspan.devguard.com/svn/fields

© 2008 Acquia, Inc.Fields in core

Questions?

Barry Jaspan
barry.jaspan@acquia.com

mailto:barry.jaspan@acquia.com
mailto:barry.jaspan@acquia.com

