

Hack-proof Your Drupal App

Key Habits of Secure
Drupal Coding

Introductions
• CommonPlaces

– Erich Beyrent, V.P. of
Engineering

– Amanda Giovanni, Director of
Enterprise Risk Management

Introductions
•WhiteHat Security

– Arian Evans,
Operations Director

Introductions
•Katalyst Strategies

– Matthew J. Nash,
Director of Cyber Risk
Management

Security? Who cares?

Have you ever been hacked?

Web Application Security

• Analysts estimate that 75% of attacks
against web servers enter at the
application, not the network level

• As many as 15% of these attacks are due
to poor coding practices

Case Study: Greenopolis.com

Case Study: Greenopolis.com
• Modules
• Theme
• Flash and Flex
• Security Audit Results

Greenopolis Modules
• Greenopolis currently uses 92 modules

Greenopolis Modules
• Greenopolis currently uses 92 modules
• 20% of those modules are custom

Greenopolis Theme
• Greenopolis uses a custom theme
• template.php, lots of individual templates

Flash and Flex
• Greenopolis has Flex widgets that can be

embedded on any site, which get data via
Services

Flash and Flex
• Greenopolis has Flex widgets that can be

embedded on any site, which get data via
Services

• Greenopolis has an interactive Flash map of the
US that gets data from Services

Flash and Flex
• Greenopolis has Flex widgets that can be

embedded on any site, which get data via
Services

• Greenopolis has an interactive Flash map of the
US that gets data from Services

• Greenopolis has a Flex TiltingPane widget that
displays partner logos, populated via Services

Security Audit Results
• WhiteHat Security performed an audit of the

application layer

Security Audit Results
• 120 vulnerabilities were

discovered in the following
categories:
– XSS
– CSRF
– SQL Injection
– Session fixation
– Insufficient Authorization

What We Learned:

• 90% of the vulnerabilities existed in the
theme

Fixing The Problems:

• Completely reviewed the theme,
implementing Drupal output filters

Fixing The Problems:

• Completely reviewed the theme,
implementing Drupal output filters

• Code was audited to ensure sanitization of
all user generated data

Fixing The Problems:

• Completely reviewed the theme,
implementing Drupal output filters

• Code was audited to ensure sanitization of
all user data

• Rewrote the search forms to sanitize user
generated data

Fixing The Problems:

• Completely reviewed the theme,
implementing Drupal output filters

• Code was audited to ensure sanitization of
all user data

• Rewrote the search forms to sanitize user
data

• Implemented web services proxy

Key Habits of Secure
Drupal Coding

We are going to discuss:

• Sanitize Your Output

We are going to discuss:

• Sanitize Your Output
• Protect Your Database

We are going to discuss:

• Sanitize Your Output
• Protect Your Database
• User Input

We are going to discuss:

• Sanitize Your Output
• Protect Your Database
• User Input
• AJAX Risks

Sanitize Your Output:
• check_plain()
• check_markup()
• filter_xss()
• filter_xss_admin()

Sanitize Your Output:
Correct Usage:
echo check_plain($node->field_fname[0][‘value’]);
echo content_format(‘field_fname’, $node->field_fname[0][‘value’]);
echo t(‘%fname’, array(‘%fname’ => $node->field_fname[0][‘value’]));
echo t(‘@fname’, array(‘@fname’ => $node->field_fname[0][‘value’]));

Incorrect Usage:
echo $node->field_fname[0][‘value’];

Protect Your Database:
• db_query()
• db_rewrite_sql()

Protect Your Database:
Correct usage:
$result = db_query(“SELECT foo FROM {bar} WHERE foo = ‘%s’, $unsafe_var);

Incorrect usage:
$result = db_query(“SELECT foo FROM {bar} WHERE foo = $unsafe_var”);

User Input:
• Use the Form API

User Input:
• Use the Form API

– Sanitize $_POST (and $_GET) data

Javascript and AJAX:
• Rule #1 – Javascript can be disabled
• Don’t assume data to AJAX postback

functions are coming from your javascript
• Don’t assume AJAX transactions are

private and cannot be observed by users
• Re-encode and escape all output

Don’t Trust User Input!

Things That Will Bite You:
• Outputting raw values
• Modifying data with

$_GET
• Parameterized

queries? WTF?
• Hacking core and

killing kittens

Drupal Security Resources

• Drupal.org
– http://drupal.org/writing-secure-code
– http://drupal.org/node/28984

• Drupal Security Team
– http://drupal.org/node/32750

• Pro Drupal Development book
– http://drupalbook.com

http://drupal.org/node/28984
http://drupalbook.com/
http://drupalbook.com/

Drupal Tools

• Update module
http://drupal.org/project/update_status

• Coder module http://drupal.org
/project/coder

• Interactive debuggers (Zend, XDebug)

http://drupal.org/project/update_status
http://drupal.org/project/coder
http://drupal.org/project/coder
http://drupal.org/project/coder

Participate!

• Subscribe to the Drupal Security RSS feed
• Send vulnerabilities and patches to the

Drupal Security Team

Q & A

Erich Beyrent, erich@commonplaces.com
Arian Evans, arian.evans@whitehatsec.com

mailto:erich@commonplaces.com
mailto:arian.evans@whitehatsec.com

