Hacquia

Security Testing with Static
and Dynamic Analysis

Barry Jaspan
Drupalcon Szeged 2008

‘acquia

During this talk, 7
Drupal sites will launch

All of them are insecure

100% of the other
dynamic sites you use

are insecure, too

* Including your bank

Programmers will never
stop making security
mistakes

* We'’re doomed

Security Testing with Static and Dynamic Analysis © 2008 Acquia, Inc.

Macquia

Questions?

Barry Jaspan
Acquia, Inc.
barry.jaspan@acquia.com

Security Testing with Static and Dynamic Analysis © 2008 Acquia, Inc.

mailto:barry.jaspan@acquia.com
mailto:barry.jaspan@acquia.com

Hacquia

ldentifying problems

* Reacting to attacks
Ineffective: the attacker may not reveal himself
Stressful: attacks tend to cause panic
Unreliable: you may not find the hole

Extremely undesirable: this is NOT how you
want to discover a problem

Unavoidable: realistically, this will happen

Security Testing with Stat © 2008 Acquia, Inc.

Hacquia

|dentifying problems

* Human security audits
Effective: security specialists are good at their job
Expensive: they know it
Unreliable: no one ever finds all the problems

Impractical: there is too much code, changing too
quickly

Irreplaceable: human analysis will ALWAYS be
required

Security Testing with Stat © 2008 Acquia, Inc.

Macquia

|dentifying problems

* Automated security testing
* Effective: proven to catch many problems
* Inexpensive: software is cheaper than people

* Unreliable: no tool ever finds all the problems
* All approaches are unreliable!

* Best bet is to combine as many as possible
* Types of automatic testing

* White box: uses insider access to the source

* Black box: remote penetration testing

* This talk is about white-box testing

Security Testing with Static and Dynamic Analysis © 2008 Acquia, Inc.

Hacquia

Best ways to hurt yourself

* Winner! Insufficiently validated input
« XS§S
« SQLi
» CSRF
* Runners up
* Logic errors
* Security model flaws

e Countless others

* Automated testing is quite effective for
unvalidated input

Macquia

Data tainting

* “Taint” data based on source (not content)
- $ GET,$ POST,$ SERVER, command line...

* Propagate taint

Sfoo $ GET[‘foo’]; // Sfoo tainted
Sbar ‘bar’ ; // Sbar not tainted
Smix Sfoo . S$bar; // Smix tainted

myfunc ($mix) ;
function myfunc($arg) { /* $arg is tainted */ }

Define de-tainters and sinks which reject taint

echo $bar; // okay
echo Smix; // error; echo rejects taint
echo check plain($mix); // okay; check plain de-taints

* Rules define taint types, sources, and sinks

Security Testing with Static and Dynamic Analysis © 2008 Acquia, Inc.

‘acquia

Simple example:
Coder module

Study source without
running it

Consider all possible
control paths

Use data flow analysis
to track tainted data

Use rules to find bugs

Completeness is
impossible; so what?

False positives occur

Security Testing with Static and Dynamic Analysis © 2008 Acquia, Inc.

Static Analysis: Fortify SCA ¢

Source: bootstrap.inc:290 Read $ SERVER['HTTP_HOST'()

288 Sconfdir = 'sites':

289 Suri = explode('/', S_SERVER['SCRIPT NAME'] ? S$_SERVER['SCRIPT NAME'] :
S_SERVER|['SCRIPT_FILENAME']):

290 Sserver = explode('.', implode('.', array_reverse(explode(':',
rtrim(S_SERVER["HTTP_HOST'], '.'))))):

291 for ($i = count(Suri) - 1; $i > 0; $i--) {
292 for ($j = count(S$server): $j > 0: Sj--) {

Sink: file.inc:141 mkdir()

139 // Check if directory exists.
140 if (!is_dir(S$directory)) {
141 if ((Smode & FILE_CREATE_DIRECTORY) && @mkdir(Sdirectory)) {

142 @chmod(Sdirectory, 0775); // Necessary for non-webserver users.
143 }

 $base path based on HTTP_HOST

* Defined in bootstrap, passed to file.inc

 Static analysis identifies the flow

* False positive, but just barely

Security Testing with Static and Dynamic Analysis © 2008 Acquia, Inc.

Dynamic Analysis @acysa

Operates during
execution

Consider control
paths actually taken

Tracks taint in
interpreter

False positives are
unlikely

PHP has no native
support; patched
interpreter required

Security Testing with Static and Dynamic Analysis © 2008 Acquia, Inc.

Macquia

Tainting the database

* Is data from the database tainted or not!?
* user.email: validated pre-write, so it’s safe

* node.title: validated post-read, so it’s not safe

* Per-column taint information in schema

* On read, set taint property on any data coming
from a tainted column

On write, verify lack of taint on any data going to
a tainted column

* Preserves taint properties across the database

* Requires (?) dynamic, not static, analysis

Security Testing with Static and Dynamic Analysis © 2008 Acquia, Inc.

Macquia

Taint Drupal

* Based on Taint PHP by Wietse Venema

 Defines fixed set of taint bits
- TC HTML, SQL, PCRE,.., ALL

* Taint-enables a subset of PHP and ext functions
* database.taintmysgli.inc does db tainting

* Schema changes:

function taint schema alter ($schema) {

// title contains raw text from the user

Sschema|[‘node’][‘fields’][‘title’][‘taint’] =
TC_ALL;

// message can contain the path but must be

// check plain()ed before INSERT

Sschema[‘watchdog’][‘fields’] [‘message’] [‘taint’] =
TC_ALL & ~TC_ HTML;

Security Testing with Static and Dynamic Analysis © 2008 Acquia, Inc.

Taint Drupal: Node title Gz

* This bug was in Drupal 6.0:

function node page edit($node) {
drupal set title($node->title); // XSS!
return drupal get form($node->type .' node form',
Snode) ;

}
* Taint Drupal catches it automatically:

My Safe Node Title View Dev load Dev render

warning: print() [function.print]: Argument contains data that is not converted
with htmlspecialchars() or htmlentities() in /Users/bjaspan/engineering/carbon
/branches/taint/themes/garland/page.tpl.php on line 7.

warning: print() [function.print]: Argument contains data that is not converted
with htmlspecialchars() or htmlentities() in /Users/bjaspan/engineering/carbon
/branches/taint/themes/garland/page.tpl.php on line 70.

Title:
My Safe Node Title

Security Testing with Static and Dynamic Analysis © 2008 Acquia, Inc.

Taint Drupal: Simpletests ~ #o@

* Taint Drupal is integrated with Simpletest

Taint-checks all covered code paths automatically
Logs all taint errors as Fails

Simulated penetration testing not needed

Eventually, this can wipe out XSS, SQLi, and more

* ...especially if used in production with hard failures

Security Testing with Static and Dynamic Analysis © 2008 Acquia, Inc.

Macquia

Taint Drupal: Status

* Requires patched & re-built PHP interpreter

* Taint PHP is experimental and incomplete

* Further work may require a fork

* Taint Drupal is also incomplete

* Needs taint settings for columns of every table
in the schema (core and contrib)

* Assumes TC NONE unless told otherwise, so
you can “‘page in” taint bits as you get false
errors

* Not yet publicly available

Security Testing with Static and Dynamic Analysis © 2008 Acquia, Inc.

£ acquia

Hacquia

Questions?
(for real this time)

Barry Jaspan
Acquia, Inc.
barry.jaspan@acquia.com

mailto:barry.jaspan@acquia.com
mailto:barry.jaspan@acquia.com

