
Using Node Access
DrupalCON Szeged 2008
 Ken Rickard
 Moshe Weitzman

Agenda: The Big Questions

•What is Node Access?

•How does Node Access work?

•What modules provide Node Access?

•Why does Node Access not do [insert feature X here]?

•How can we improve Node Access for Drupal?

Agenda: Node Access APIs

•Node Access terminology

•Defining access realms

•Defining access grants

•Development tools

•Best practices

What is Node

Access?

• Drupal’s system for regulating
which users can see which
content.

• A function in the core Node
module.

• An API for defining access to
node content.

Site with Domain Access

Domain Access with OG on

an allowed domain

DA and OG with private node

on invalid domain

Access allowed by Domain

Access

Both modules deny access

None shall pass

How does Node

Access work?

• Define security permissions.

• Define blanket permissions.

• Define node module
permissions.

• Define node access module
permissions.

• Return TRUE or FALSE.

Security and global checks

Specific node module checks

Node Access checks

Come see the violence

inherent in the system!

All node access systems are not created equal: 1

• Node Access modules cannot grant ‘create’ privileges.

• These are restricted to node modules and hook_perm.

All node access systems are not created equal: 2

• Node Access modules cannot act on unpublished nodes.

• These are restricted to administrators and super-users.

All node access systems are not created equal: 3

• The {node_access} table is not designed for CRUD.

• Design intent dictates database schema and enforces a limitation.

All node access systems are not created equal: 4

• Multiple node grants can cancel each other out.

All node access systems are not created equal: 5

• Node Access rules are collapsed by priority.

Many (happy) returns

• Eight returns.

• Defaults to FALSE == good.

• Finding the conflicts in your
code can be a burden.

• No hooks to alter other access
grants.

hook_access()

Module create view update delete

blog x x x

forum x x x

node x x x

poll x x x

project x x x x

image x x x

Node modules should not restrict ‘view’

Making it work

• Crucial concepts

• Realms

• Grant Id [GID]

• grant_view

• grant_update

• grant_delete

{node_access} defaults

• The default row in the table must be present unless other node access
modules are in use.

• Otherwise the queries all return null.

hook_node_access_records()

• Defines the rules that are saved to the {node_access} table. This routine is run
just after node_save().

What to return for each record

• Positional (not keyed) array, containing:

• ‘realm’ --> A unique name for your grant. Multiple realms are allowed.

• ‘gid’ --> A numeric identifier for the grant, indicating the context.

• ‘grant_view’ --> TRUE or FALSE that users can view the node.

• ‘grant_update’ --> TRUE or FALSE that users can edit the node.

• ‘grant_delete’ --> TRUE or FALSE that users can delete the node.

• ‘priority’ declarations are frowned upon, as they disable other modules.

Writing to {node_access}

• Never write directly to {node_access} when saving a node. Let the API
handle it for you.

• You might need to insert default data here, but only in special cases.

Challenges to overcome

Storing your records

• node_access_rebuild() will empty and rebuild {node_access}.

• Be prepared!

Module access records

• Store your data in a safe place -- your own table.

• Store whatever data you need to rebuild your grants in the {node_access}
table.

Declaring node grants

hook_node_grants()

• Determines the access rights for an individual user. These values are used to
write the {node_access} SQL statement.

• $op may be view, update or delete.

• Your return value may vary based on the $op.

What to return for each grant

• An associative (keyed) array of grants, where the realm is the key and the
value is an array of grant ids.

• ‘realm’ --> A unique name for your grant. Multiple realms are allowed.

• ‘gid’ --> A numeric identifier for the grant, indicating the context.

• $grants[‘my_grant’] = array(1, 2, 3);

-or-

$grants[‘user_grant’][] = 10;

$grants[‘user_grant’][] = 20;

How grants are applied

• When a page is requested, the $grants array is transformed into a JOIN query
from the {node} to {node_access} table.

The system in action

Query #1: Should we bother?

• If a NULL count is returned, access is denied.

node_access_view_all_nodes()

SELECT COUNT(*) FROM node_access

 WHERE nid = 0

 AND (

 (realm = 'all' AND gid = 0)

 OR (realm = 'domain_site' AND gid = 0)

 OR (realm = 'domain_id' AND gid = 16)

)

 AND grant_view >= 1;

Query #2: Count the pages

• Send a pager_query() to count the output.

pager_query()

SELECT COUNT(*) FROM node n

INNER JOIN node_access na

ON na.nid = n.nid WHERE

(na.grant_view >= 1

 AND ((na.realm = 'all' AND na.gid = 0)

 OR (na.realm = 'domain_site' AND na.gid = 0)

 OR (na.realm = 'domain_id' AND na.gid = 16)))

 AND (n.promote = 1 AND n.status = 1);

Query #3: Build the pages

• Send a pager_query() to build the output.

pager_query()

SELECT DISTINCT(n.nid), n.sticky, n.created

FROM node n INNER JOIN node_access na

ON na.nid = n.nid WHERE (na.grant_view >= 1

AND ((na.realm = 'all' AND na.gid = 0)

OR (na.realm = 'domain_site' AND na.gid = 0)

OR (na.realm = 'domain_id' AND na.gid = 16)))

AND (n.promote = 1 AND n.status = 1)

ORDER BY n.sticky DESC, n.created DESC LIMIT 0,
10

Tips from the wizard

The default grant

• Notice that the default grant is always checked.

• This is why node_access_rebuild() removes it if other node access modules
are present.

Troubleshooting

• If no node access modules, check for ‘row zero’ in {node_access}

• If multiple node access grants (or modules), check for conflicts.

• Remb

• Remember the -OR- factor.

Developer tools: Devel Node Access

Developer tools: hook_node_access_explain()

• Tell people what your module does in everyday language!

Developer tools: build a debugger

Help us build a better system

• Saturday at 13:30

• Cisco BOF room

And there was much

rejoicing!

